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The half-width of the electron-spin absorption band 
of the Z% center, 39 Oe, is less than that of the F center 
in KC1 which is 58 Oe.16 This difference can be under
stood qualitatively in terms of our Z3-center model 
since there is no hyperfine interaction between the 
electron and the strontium nucleus which has zero 
magnetic moment. 

END OR studies should provide an important test 
16 A. F. Kip, C. Kittel, R. A. Levy, and A. M. Portis, Phys. 

Rev. 91, 1066 (1953). 

of the Z3-center model that is proposed in this paper. 
Such measurements and photoconductive studies have 
been planned. 
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The absorption and emission processes of the F center and their relationship to each other are treated using 
a model which contains many of the features of an exact treatment. The calculations are based on a formula
tion in which the total energy of the crystal in the ground and excited states is expressed as a function of the 
variational parameters in the F-center wave functions and of the displacements of the neighboring ions. The 
F electron is treated quantum-mechanically, but classical ionic crystal theory is used for all other terms in the 
total energy. A modified method of steepest descents is used to minimize the total energy. The electronic 
structure of the outer shells of the first nearest neighbor ions is taken into account in detail in the expression 
for the energy of the F-center electron. Simple, one-parameter, vacancy-centered wave functions are used to 
describe the F electron. A large Stokes shift is obtained in all crystals. The distortions are small in the ground 
state but, in the relaxed excited state, they are of the order of 10% of the nearest-neighbor distance and have 
a pronounced asymmetry. 

I. INTRODUCTION 

THE F-center lattice defect in alkali-halide crystals 
consists of an electron trapped at a vacant nega

tive ion site. This defect is one of the simplest which can 
occur in ionic crystals, and in the physics and chemistry 
of lattice defects in these crystals it occupies a position 
of importance roughly comparable to that of the hydro
gen atom in ordinary chemistry. It is not surprising, 
then, that many calculations of the electronic structure 
of the F center have appeared. The most detailed of 
these have been made by Kojima,1 Gourary and 
Adrian,2 Pekar,3 and Wood and Korringa.4 Gourary 
and Adrian5 have given a review of many of the theoreti-

* Research sponsored by the U. S. Atomic Energy Commission 
under contract with the Union Carbide Corporation. 

t A preliminary report on this work was given in the Bull. Am. 
Phys. Soc. 9, 240 (1964). 

1T. Kojima, J. Phys. Soc. Japan 12, 918 (1957). 
2 B . S. Gourary and F. J. Adrian, Phys. Rev. 105, 1180 (1957). 
3 S. I. Pekar, Uspekhi Fiz. Nauk 50, 197 (1953). 
4 R. F. Wood and J. Korringa, Phys. Rev. 123, 1138 (1961). 
6 B. S. Gourary and F. J. Adrian, in Solid State Physics, edited 

by F. Seitz and D. Turnbull (Academic Press, Inc., New York, 
1960), Vol. 10. 

cal calculations carried out up until about 1960. Most of 
the calculations have been limited to an investigation of 
the ground and first excited states of the center in a 
rigid, undistorted lattice. The lattice has usually been 
treated either as a continuum or as made up of simple 
point ions, although in Refs. 1, 4, and 5 an effort has 
been made to take into account the structure of the 
lithium ions which are first-nearest-neighbors (Inn) to 
the vacancy in LiF1'5 and LiCl.4 The effect of lattice 
distortions on the energy levels has not yet been treated 
in a consistent manner, although a first step has been 
made in Ref. 4. The importance of lattice distortions 
can be inferred from the emission spectra of the F 
center. 

The principal emission band of the F center in alkali-
halide crystals exhibits a large Stokes shift. In these 
crystals, the peak of the emission band corresponds to 
a transition energy Aee which is usually about half as 
large as the F-band absorption energy Aea; that is, 
Aee~0.5Aea. To understand how this large Stokes shift 
can come about, we must consider that the electronic 
wave function of the ground state of the ^-center elec-
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tron is of Ti+ symmetry of the octahedral group, 
whereas that of the first excited state is of r4~* sym
metry. The excited state is long-lived compared to the 
characteristic time of lattice relaxation ( ~ 1 0 ~ n sec) 
and hence the lattice will adjust locally to the sym
metry of the excited-state wave function before emission 
occurs. During the emission process the Franck-Condon 
principle is assumed to apply. I t may happen that both 
the ground- and excited-state energies calculated with 
the excited-state distortions are considerably different 
from those calculated with the ground-state distortions. 
We shall see that this is, indeed, the case for the F center 
in the alkali halides. Evidently, the distortion of the 
lattice in the vicinity of the defect is quite important. 

Swank and Brown6 have found that the lifetime of the 
excited state of the F center is considerably longer than 
might be expected from the usual arguments applicable 
to atomic systems. Fowler and Dexter7 have discussed 
this result and several possible explanations of it, some 
of which we shall consider later. One suggestion which 
has been made by various people is that there is a level 
of Ti+ symmetry, lying below the first excited level, 
which serves as an electron trap and thus increases the 
lifetime. One of the present authors8 carried out calcula
tions on Li CI which indicated that this is apparently 
not the case, although it cannot yet be ruled out com
pletely. Those calculations indicated that there is a 
state of Ti+ symmetry lying just above the first excited 
state, but at least part of the K band was attributed to 
transitions to this state. I t is not inconceivable that, 
after lattice relaxation, this level or another one of for
bidden symmetry lies below the first T^r level. Detailed 
calculations are needed on this point. 

Pekar, in Ref. 3, has treated the F center in a con
tinuum approximation in an attempt to understand the 
emission spectra and the temperature broadening of the 
lines. His approach gives some striking results, but 
Fowler and Dexter,9 among others (including Pekar 
himself), have criticized it and we shall not discuss it 
here. 

From the foregoing it should be apparent that the F 
center is of considerable interest in its own right. There 
are two additional reasons which make it interesting as 
a specific center. The first derives from the experi
mentally well-established fact that F centers can 
aggregate to form other defects such as the M and R 
centers. The electronic structure of the M center has 
been investigated with reasonably good results on the 
basis of the model of two F centers bound together at 
neighboring halide sites.10,11 The second reason is that 
the F center and its aggregates are somewhat unusual 

6 R. K. Swank and F. C. Brown, Phys. Rev. 130, 34 (1963). 
7 W. Beall Fowler and D. L. Dexter, Phys. Rev. 128,2154 (1962). 
8 R. F. Wood, Phys. Rev. Letters 11, 202 (1963). 
9 W. Beall Fowler and D. L. Dexter, Phys. Stat. Solidi 2, 821 

(1962). 
10 Axel Meyer and R. F. Wood, Phys. Rev. 133, A1436 (1964). 
11R. A. Evarestov, Opt. i Spektroskopiya 16, 361 (1964) 

[English transl.: Opt. Spectry. 16, 198 (1964)]. 

defects, in that there are no sources of potential at the 
vacant lattice sites. Thus, these defects, especially in 
their ground states, appear to conform more closely to a 
particle-in-a-box model that to that of a hydrogenic im
purity imbedded in a crystal. While it is not yet clear 
that this gives them any distinctive properties, it is pos
sible that it may do so. For example, it may be that these 
centers are unusually sensitive to the movement of 
neighboring ions. 

For the theoretician, the F center seems destined to 
serve as a test case for various methods of calculating 
the electronic structure of lattice defects in ionic crys
tals. The F center is a deep trap compared to those 
found in doped silicon and germanium. The perturba
tion of the host lattice is well localized and fairly strong, 
at least in the ground state. Lattice distortions are 
present and may be important but, as far as we know, 
very little detailed work has been done to date on the 
effects of local distortions on the optical properties of 
defects. The F center is a one-electron defect which very 
nearly preserves the over-all charge distribution of the 
perfect crystal, a characteristic which reduces the im
portance of electronic polarization effects, although 
these effects may become important in the excited 
states. The interactions of defects with the phonon field 
are important for both optical and thermal properties 
and the F center, because of its simplicity, may serve 
as a model when investigating these properties. 

In this paper, we attempt to treat the absorption and 
emission spectra of the F center and their relationship 
to each other in a consistent way, using just about the 
simplest model which contains most of the features of an 
exact treatment, with the notable exception of the 
dynamic electron-phonon interaction. We take distor
tions of the lattice into account in all of the states which 
we treat, but the distortions are limited to displace
ments of the nearest-neighbor ions. We do this by ob
taining an expression for the total energy of the crystal 
in the ground and excited states as a function of the 
variational parameters in the ^-center wave functions 
and of the displacements of the neighboring ions. The 
F electron is treated quantum-mechanically, but classi
cal ionic crystal theory is used for all other terms in the 
total energy. A modified method of steepest descents is 
used in an iterative procedure to minimize the total 
energy. The electronic structure of the outer shells of 
the first nearest-neighbor ions is taken into account in 
detail in the expression for the energy of the F-center 
electron. Simple, one-parameter, vacancy-centered wave 
functions are used to describe the F electron. 

In the next section, we shall discuss the Hamiltonian 
and the wave functions which we used to obtain the ex
pressions for the energy of the F center in a distorted 
crystal. In Sec. I l l , we expand that part of the total 
energy of the crystal derived from classical ionic crystal 
theory up to second order in small displacements and 
combine the results with those of Sec. I I to obtain an 
expression for the total energy of the crystal. In Sec. 
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IV, some equations for oscillator strengths and life
times are set forth. In Sec. V, the details of the calcula
tions and the results are given, and in the last section we 
discuss the results. 

II. THE F-CENTER HAMILTONIAN AND 
WAVE FUNCTIONS 

Of course, it is evident from the outset that in treat
ing this problem of a crystal containing an F center we 
are severely limited in what we can handle. The most 
we can hope for at this time is to get at least an approxi
mation to the Hartree-Fock problem for the crystal 
with the F center. We approach the problem in the same 
spirit in which Landshoff,12 Lowdin,13 and Howland14 

calculated the cohesive energy of the alkali halides. One 
of the characteristics of this approach is that the free 
ion Hartree-Fock orbitals of the alkali and halide ions 
are assumed to be unchanged when the ions come to
gether to form a crystal. However, since this assumption 
cannot be rigorously correct, we shall not be too con
cerned about the exact form of the ion orbitals which we 
use. The total wave function of the many-electron sys
tem is written as an antisymmetrized product of the 
free ion space-spin orbitals, i.e., 

¥(1,2, *' •,») = A^(1)U2)'' • *»(») • (1) 

A is the antisymmetrizing operator given by 

A = (n\)-^U-l)»P, (2) 
P 

in which n is the number of electrons and p is the parity 
of the permutation operator P. It is a relatively simple 
task to write down the formal expressions for the equa
tions which determine the one-electron orbitals of the 
entire crystal in this approximation.15 This is most 
easily done for orthogonal orbitals and so we shall 
assume that the orbital of the F-center electron can be 
obtained from an effective Hamiltonian equation appro
priate for such orbitals. We further assume that the 
electronic structures of the rest of the ions in the crystal 
are undisturbed from their perfect crystal forms, and 
when it is necessary to take this structure into account 
we use analytic approximations to the free ion Hartree-
Fock orbitals as discussed above. This approximation 
means that, among other things, we are neglecting elec
tronic polarization by the F center, but we shall be able 
to take into account the effects of the ionic displace
ments. As was mentioned in the Introduction, the ne
glect of electronic polarization is probably a fairly good 
approximation for a highly localized defect in its ground 
state, but it is not clear that it will be an adequate one 
for the more diffuse excited states. 

12 R. Landshoff, Z. Phys. 102, 201 (1936). 
13 P.-O. Lowdin, Theoretical Investigation into Some Properties 

of Ionic Crystals, University of Uppsala Dissertation (Almqvist 
and Wiksells Boktryckeri, A.B., Uppsala, 1948). 

14 L. P. Howland, Phys. Rev. 109, 1927 (1958). 
16 See, for example, F. Seitz, Modern Theory of Solids (McGraw-

Hill Book Company, Inc., New York, 1940). 

We split the effective Hamiltonian of the F center in 
the crystal into its one- and two-body parts and write 

*=*i+*2, (3) 
where 

N-I Zv 
A i = - J V - £ - ; — (4) 

>-i |r—R„| 
and 

rP(2,2)-p(l,2)P12 
h2 = / dr2, (5) 

J ru 

in which p is the Fock-Dirac density matrix defined by 
2 V - 1 nv 

P(1,2)=E E <*>,,,<1W(2). (6) 
J>=O y=i 

In the above expressions, <j>v,j is the jth atomic space-
spin orbital16 on the vth ion, Zv is the nuclear charge, 
P12 is the permutation operator, and r12 is the interelec-
tronic distance. The wave function of the F electron is 
referred to a coordinate system with origin at the vacant 
ion site given by v=0 and it is denoted by $0,i. The form 
of the Hamiltonian given by Eqs. (3)-(6) is appropriate 
when a basis set of orthogonal orbitals is being used, 
that is, the <£„,/ should be orthogonal. We have included 
finite size effects only for the first nearest-neighbor ions. 
Furthermore, we assume that the orbitals on alkali ions 
which are Inn to each other do not overlap so that in 
order to have an orthogonal set we need only to make 
the F-electron function orthogonal to the Inn ions. To 
conform to this condition we take 0o,i to be of the 
general form 

0o,i(r) = ^ [ 0 o ( r ) + E E ^ ,A,y( r -R, ) ] , (7) 
v=i y=i 

in which </>o is a vacancy-centered function and v runs 
over only Inn ion sites, which we number 1 through 6. 
The cvJs in Eq. (7) are determined by the orthogonality 
condition 

<*o.i|0,./>=O, (8) 

and they are a function of the orbital parameters, as is 
NF' Of course, <£0,i is automatically orthogonal to half 
of the ion functions through the spin coordinate. 

Substitution of Eqs. (3) and (7) into the expression 

€=<*o.i|*ko.i> (9) 
gives 

€=AV{<*ol*ko>+£ Z <7..*<*j..*l*l*o> 

6 nv 

+ E I Cptj{4>n\h\4>9tj) 
p=i y—I 

+ E i? E £ c^c&M&.i)). (io) 
M = l fc=l v=l j = l 

16 Throughout the discussion given in this paper, we assume 
the spatial part of all of the orbitals, other than <£o,i, to be doubly 
occupied, 
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We examine the term (0O | h \ 0o) first and from hi get 
just the kinetic energy, which we denote by T, and the 
nuclear attraction energy. When finding the expectation 
value of hi, we divide p into a contribution p0 from the 
term *>=0, and a contribution p—po from all other terms. 
We shall show in the Appendix that the contribution of 
po to (0o|^|0o), which is a self-energy term, cancels 
against corresponding contributions to the other terms 
in Eq. (10). We then have to consider here the elec
tronic structure of only the Inn ions, and therefore for 
more distant ions the exchange terms vanish and the 
first term in hi combines with the nuclear attraction 
terms to give the point ion approximation. Furthermore, 
for the Inn ions it is possible to write the electronic 
repulsion part of hi as a contribution from a point ion 
(of charge Z„— 1) plus a correction A due to the elec
tronic structure of the ion. For very compact ions such 
as lithium, the correction will be small, but for larger 
ions it may be quite substantial. Combining the nuclear 
attraction and the electronic repulsion terms for the Inn 
then allows us to treat them as point ions plus the cor
rection. It is easily shown that a point ion lattice will 
give a potential energy composed of a Madelung con
tribution plus terms, which we call A terms, and which 
come about because the charge density of the F elec
tron extends out beyond the shells of neighboring ions. 
We have included these corrections out to 3nn in our 
calculations. The expectation value of the second term 
in hi is the exchange energy Eex between 0O and the 
orbitals on the neighboring ions. We obtain then 

6 

(0o | h 10o> = T- (aM~6)R10~
1-' E ^ _ 1 + Z A terms 

v=l 

r 0o*(l)po'0o(l) / N 

+ E A - £ e x + / dndn, (11) 

where CLM is the Madelung constant, Ru the Inn dis
tance in the undistorted crystal; 

Znn 

ZA t e n n s ^ Z C f a o K l r - R , ! - 1 ) ! ^ ) - ^ - 1 ] , (12) 
r = l 

SA= £ ZC(*o(l)^,y(2) |ru-M*o(l)^j(2)> 

-<4>„|( |r-R,|-i)ko>], (13) 

£ e ^ £ Z^o(l)^,X2)|f12-1ko(2)^,y(l)), (14) 

and 
po/^po(2,2)-p0(l,2)P12. (15) 

The form of Eq. (11) shows that we have removed from 
the Madelung energy the effect of the six Inn when they 
are in their perfect crystal position and replaced it by a 
term 

6 

„=1 

evaluated when the ions are in their distorted positions. 
The terms in e which contain the c's we group to

gether and call the overlap energy Zw. In the Appendix, 
we carry out the reduction of these terms and obtain 
the expression 

£ o v = - i ; Z c,/t€j+(2F,j-l)(aM--l)R1<r1'l 
v=i y= i 

+ (terms containing p0') , (16) 

in which e, is the Hartree-Fock energy of the jth. orbital. 
Fvj is a factor which allows us, in effect, to approximate 
some small three-center integrals which enter into the 
problem. This is discussed in the Appendix. The term 

r0o*(iW0o(i) 
/ dridri 

J r12 

cancels with the terms containing p0' in Eq. (16) and for 
€ we obtain, with Eor

f=E0y-(terms containing po'), 

e=NF>ZT-(aM-l)Ri<r1- E Rr1 

+ £ A terms+E A - £ e x + £ o v ' ] (17) 

and 

w = ( i - i i ^ ) - ' . (is) 

This is the expression which we have used in our cal
culations. Although we limited ourselves here to a con
sideration of the electronic structure of the Inn ions, 
the equations above can be easily extended to include 
more distant ions. The function 0O is still quite general 
and it could even be given in numerical form. For most 
purposes it is better at this point to sacrifice some 
accuracy for simplicity, and so we have chosen 0O to be 
of a very simple analytical form. In order to take ad
vantage of the extensive literature on the calculation of 
molecular integrals, we represent the radial part of 0o 
by a single term of the form 

0o(f )«r w ^ r , (19) 

where n is an integer and ft is a variation parameter. 
An analysis of the potential at the center of the vacancy 
shows that this form violates the boundary condition 
at the origin. To get around this in a more exact treat
ment, 0o can be expressed as a sum of terms of the form 
(19) and a secular determinant set up. 

We may sometimes refer to our wave functions as 
being of s type or p type in correspondence with the 
symmetry of 0O. Due to the orthogonalization to the ion 
cores the symmetry designations of the irreducible rep
resentations of the octohedral group are the appropriate 
ones, even for the simple wave functions used here. 
Thus, our usage of s type and JTI+, and p type andd r4~ 
interchangeably, while not quite correct, should cause 
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no confusion and it may aid in visualizing the wave 
functions. In fact, in this paper we shall limit our start
ing functions <f>o to s and p types and neglect the g,/, etc., 
terms which also contribute to Ti+ and T4~. 

III. TOTAL ENERGY OF THE CRYSTAL 

In order to find the distortions around an isolated de
fect, we obtain an expression for the total energy of the 
crystal containing an F center and then minimize it with 
respect to small displacements of the ions neighboring 
the defect. Following Ref. 4, we write for the total 
energy of the distorted crystal 

ST
d=SL

d+Se
d. (20) 

Here §L
d is the energy of a fictitious crystal in which a 

complete halide ion has been removed without permit
ting any rearrangement of the valence or core electrons 
other than those connected with the (still arbitrary) dis
placements of the ions. Se

d is the energy of the F-center 
electron in this fictitious crystal. SL

d was calculated 
classically and was written in the form 

« ^ = « 1 + 5 2 - 5 1 * - S 2 * . (21) 

Si is the Coulomb energy of the complete, but dis
torted, lattice; S2 is the repulsive energy of interaction 
between the ionic cores of that lattice; and S\h, S2

h are 
those terms in S\ and S2 involving the removed halide 
ion. We assumed that only nearest-neighbor ions ex
perience core interaction, and this was represented by a 
two-body potential of the form 

Vr(R) = b/Rx. (22) 

The values of the parameter X were taken from the 
literature. The quantities Si, S2, <§iA, and S2

h were ex
panded in Taylor series in the ionic displacements. All 
cubic and higher order terms in this expansion were 
neglected. 

Two types of deformation were considered: 
(a) An isotropic distortion, applicable when the elec

tron is in its relaxed ground state, and characterized by 
a radial displacement inward of the Inn ions by the 
amount 

Ai=*iRio. (23) 

Second-nearest-neighbor displacements can be treated 
in this case but they are more difficult to deal with in the 
excited state where anisotropic distortions occur. The 
work of Ref. 4 indicated that Inn displacements were 
very small in the ground state. We expect them to be 
larger in the excited state, but since they are difficult to 
handle we have considered only Inn displacements in all 
cases. 

(b) An anisotropic distortion, applicable when the 
electron is in the relaxed excited state, and characterized 
by radial displacements inward of the Inn by the 
amounts 

A / = 5 / i ? i 0 and A2 '=52 '#io. (24) 
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Here A2' applies to the two neighbors in the direction of 
the principal symmetry axis of the excited state wave 
function and A / applies to the four other neighbors. Dis
placements of the Inn ions would involve at least 
four A's. 

From Ref. 4, we have obtained the following expres
sions for the changes in Sh S2, Sih, and S2

h in the ex
cited state. The ground state expressions follow simply 
by putting 5/=<52': 

A S / = (3 / i i i o ) [ ( ^ /2+ i )5 l
, 2 +^« 1

, f i 2 / +A«» ' 8 ] , (25) 

A & ' = O M ( X - l ) / 3 £ 1 0 l 2 « i , * + f c , a ] , (26) 

A < S 1 ^=- (2 / i ? 1 o) [2V+5 2
, +25 1

/ 2 +5 2
/ 2 ] , (27) 

A £ / * = ( W 3 # i o ) 

X [ 2 5 / + 5 / + K X + 1 ) (25/2+ a2/*)-j m (28) 

We then write 

ST
d=ST

u+&S1'+AS2' 

-AS1'*-A8*'»+S.'(R1'&'), (29) 

where 

£ / = ( l - 5 / ) £ 1 0 , (30) 
* 2 ' = ( l - * 2 ' ) * i 0 . (31) 

&J(Ri,R2) is given by Eq. (17) of the preceding sec
tion, i.e., £ / ( £ / , £ / ) = e'. 

In order to get the energy of absorption, we minimize 
ST6, for the ground state with respect to hx and fi and 
then find Se. Next, assuming the Franck-Condon princi
ple to hold, we calculate SJ using the dx found for the 
ground state. For the emission energy, Eq. (29) is 
minimized with the F electron in the excited state and 
the new distortions found. With these distortions the 
ground-state energy of the F electron is minimized as a 
function of £. 

Since we have allowed 5 / ^ 5 / , we have gone beyond 
the case dealt with by simple configuration coordinate 
diagram theory. In this theory, the total energy of the 
crystal is treated as a function of a single parameter 
called the configuration coordinate which describes the 
position of the neighboring ions. In fact, the total en
ergy is a complicated surface which may require many 
parameters to describe adequately. We thought it would 
be interesting to see what results the simple theory 
gave for one or two of the crystals. In this case, we have 
only to keep 5 / = 5 / when allowing the lattice to relax 
with the F electron in the excited state. 

IV. THE LIFETIME OF THE EXCITED STATE 

I t was mentioned in the Introduction that the first ex
cited state of the F center in KC1 has a lifetime appreci
ably longer than might be expected from considerations 
appropriate to atomic systems. Fowler and Dexter in 
their discussion (Ref. 7) of defects in dielectric media 
suggest a number of possible explanations for this. The 
most obvious causes are those connected with the large 
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Stokes shift and we are now in a position to investigate 
some of these. 

The oscillator strength for the transition from level a 
to level b is given by 

2m |<<M|r|J,j>|5 

Jab— Aea& zL 
M2 u 2Ja+l 

(32) 

in which Aea&= \ea— e&|, m is the electronic mass, 
2 / a +1 gives the degeneracy of the ath level, and i and 
j are summation indices for the components of levels a 
and b, respectively. Equation (32) neglects the shape 
function for the line given by the transition a—*b. 
This may be rather important for a center which inter
acts strongly with the phonon field, but we shall use 
Eq. (32) as it stands. 

In terms of the oscillator strength, the lifetime for a 
transition from level b to level a is given by 

r So I 2 Wrn* 

L<Seff(A€6a)J 2e2n(Aeba 

Aea6 

_<geff(A€6a)J 2e2n(Aeba) (Ae6a)
3 

EwlW|r|ft,i>|2(2/6+l) 
X- •faiT1. (M) 

Ziti\(bJ\t\a9i}\K2Ja+l) 

Here, S0 is the average field throughout the specimen 
and <§eff(A€&fl) is the effective field at the defect when it 
is in state b. m* is the effective mass, which we take to 
be the true mass; n is the index of refraction; e is the 
electronic charge; and c is the velocity of light. (a,i\t\byj) 
is not, generally, equal to (b,j\t\a,i) because of lattice 
relaxation. 

The principal quantities of interest to us here are the 
transition energies Aefl& and Ae&a, the transition matrix 
elements (a,i|r| J,j), etc., and the ratio of the effective 
field <§eff to the average field So. This last quantity is 
difficult to treat correctly with any rigor and we will 
not consider its evaluation here. We do feel, however, 
that it may be a source of some of the discrepancies 
which may exist between theory and experiment. 

In an atomic system, the lifetime is given by 

(34) 
c* (2/5+1) 

Taba = fab""1 

2e2(Aeba)
2 (2/«+l) 

and Ae&a= Aea&. Roughly speaking, we can say that the 
ratio of the lifetime of this two-level system imbedded 
in a dielectric medium to its lifetime when it is treated 
as an "atomic system" is 

Tb< 

a
m l r So 12/Ae«6\ 

}a
a nLSeft(Aeba)J \Aeba/ 

X . (35) 

right-hand side are for transitions from level a to level 
b and that, whereas /a&

a=/&aa, it is certainly not true 
that fab

m=fba
m. We expect the ratio fab

a/fab
m to be 

between 1 and 3 for the F center in the alkali halides 
and here we just put it equal to 2. We also put the ratio 
So/Sen= 1 for simplicity. We then have 

rba
m 2/Aeab\Zi,j\(a}i\r\bJ)\2 

=- ( ) . (36) 
rba

a n\Aeba/Hj,i \(b,j\r\ a,i) |2 

We shall use our wave functions to calculate the above 
ratio in the case of KC1. (a,i\t\bj) will be calculated 
with the ground- and excited-state wave functions going 
with the ground-state distortions and (b,j\r\a,i) will be 
calculated with the corresponding functions going with 
the excited-state distortions. 

V. CALCULATIONS AND RESULTS 

The minimization of Eq. (29) with respect to 5/, 
82', and 0' is not simple. The greatest difficulty arises in 
the calculations of the two-center, two-electron integrals 
appearing in Eqs. (13) and (14). These must be re
evaluated repeatedly in the modified method of steepest 
descent which we are using for the minimization process. 
We are very grateful to J. C. Browne of the University 
of Texas for making available to us his programs for 
calculating the two-center integrals. The entire problem 
has been programmed for computation on the CDC-
1604 at ORNL. 

The quantities in Eq. (29) which change from crystal 
to crystal are Rio, X, the FVt/s and the orbitals on the 
neighboring ions. 

The factors Fvj have been set equal to 1 in all of the 
calculations reported here. The justification for this is 
that ey in Eq. (16) is much larger (by about a factor of 
10) than the other terms appearing there, so even a 
fairly large error in FPj will have a relatively small effect 
on the energy. This should be a very good approxima
tion in the case of the lithium halides but somewhat 
poorer in the cases of more extended alkali ions. In 
truly accurate calculations, however, this factor will 
need to be investigated carefully. 

We took the values of X from the literature; they are 
the ones obtained by Pauling17 from an approximate 
quantum-mechanical calculation of the interaction be
tween ions in an ionic crystal. It is well known that the 
total energy of a crystal does not depend strongly on the 
value of X, but it might be that the energy levels and 
distortions of a defect such as the F center are affected 
rather strongly by small changes in X. We did not check 
this point in any detail, but we did try using a value of 
X(X=9.1) obtained from compressibility data in NaCl 
and found no very large differences from the results 
obtained with the Pauling value, X=8. 

For the nearest-neighbor distances i?io, we took those 

We note that both of the oscillator strengths on the 17 See Ref. 15, p. 81, and references therein. 
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TABLE I. Values of Rio (in atomic units) and X used in the 
calculations. Values of the experimental absorption and emission 
energies (where known) are also given, in electron volts. 

F CI Br 

Rio 3.80 4.86 5.18 
X 6.0 7.0 7.5 

Li Ae« 4.82 3.22 2.74 
Aee 

Rio 4.37 5.31 5.63 
Na X 7.0 8.0 8.5 

Aea 3.70 2.71 2.30 
Aee ••• 1.03 

ASa 
0a 
5! 
ea 

0af 

6a' 

Aea 

A S / 
0/ 
5 / 
5 / 

«/ 
0e 
*e 
Aee 

- 0 . 2 0 4 0 6 
0.9265 

- 0 . 0 1 2 0 
- 0 . 1 9 1 2 7 

0.4150 (0.9405)* 
- 0 . 0 7 1 4 6 ( - 0 . 0 2 2 4 7 ) a 

3.26 (4.59)a 

- 0 . 1 3 8 5 3 
0.3790 

- 0 . 1 1 2 3 
- 0 . 1 5 4 7 
- 0 . 0 6 3 9 0 

0.7685 
- 0 . 0 8 8 6 1 

0.67 

- 0 . 2 0 4 8 3 
0.7570 

+0 .0054 
- 0 . 2 0 9 6 5 

0.7700 
- 0 . 0 9 1 3 3 

3.22 

- 0 . 1 1 7 6 5 
0.3358 

- 0 . 1 0 1 6 
- 0 . 1 4 4 8 
- 0 . 0 6 2 7 4 

0.6393 
- 0 . 1 1 1 7 1 

1.33 

- 0 . 2 0 1 3 8 
0.7240 

+0 .0102 
- 0 . 2 1 0 0 6 

0.7510 
- 0 . 1 0 2 5 1 

2.93 

- 0 . 1 1 2 2 5 
0.3269 

- 0 . 0 9 7 2 
- 0 . 1 3 9 9 
- 0 . 0 6 2 2 2 

0.6095 
- 0 . 1 1 5 0 5 

1.44 

a These are the data for the other minima in ea', which are discussed in 
the text. They appear to be consistent with the LiCl and Li Br data. 

18 H. F. Ivey, Phys. Rev. 72, 341 (1947). 
19 J. H. Schulman and W. Dale Compton, Color Centers in Solids 

(The Macmillan Company, New York, 1962). 

TABLE III. Some results for NaF, NaCl, and NaBr using 2s 
and 3p functions. The excited-state quantities are indicated by 
primes. Subscripts a and e stand for absorption and emission, 
respectively. All quantities are in atomic units except for Aea 
and Aee, which are given in electron volts. 

NaF NaCl NaBr 

ASa -0.21653 -0.20345 -0.19838 
0a 0.7926 0.6964 0.6670 
5i 0.0013 0.0165 0.0187 
€« - 0 . 2 1 7 8 2 - 0 . 2 1 7 5 8 - 0 . 2 1 3 5 9 
0a' 0.7794 0.7329 0.7087 
e«' - 0 . 0 8 9 7 5 - 0 . 1 1 7 6 5 - 0 . 1 2 2 1 0 
Aea 3.49 2.72 2.49 

ASa 
0a 
5l 
€a 

0a 
€a 

Aea 

A S / 
0e' 
5 / 
5 / 
«/ 
0e 
€e 

Aee 

K F 

- 0 . 1 7 3 7 5 
0.7393 
0.0308 

- 0 . 2 0 2 2 9 
0.7576 

- 0 . 0 9 9 1 0 
2.81 

- 0 . 1 0 2 3 7 
0.2979 

- 0 . 1 0 1 1 
- 0 . 1 3 4 1 
- 0 . 0 5 1 8 5 

0.6632 
- 0 . 0 7 5 9 6 

0.66 

KC1 

- 0 . 1 6 6 9 4 
0.6660 
0.0205 

- 0 . 1 8 2 9 2 
0.6832 

- 0 . 0 9 4 9 7 
2.39 

- 0 . 0 9 2 4 5 
0.2737 

- 0 . 0 9 3 7 
- 0 . 1 2 6 8 
- 0 . 0 5 0 3 7 

0.5918 
- 0 . 0 9 2 4 5 

1.14 

K B r 

- 0 . 1 6 5 3 4 
0.6410 
0.0203 

- 0 . 1 8 0 4 6 
0.6653 

- 0 . 0 9 7 3 8 
2.26 

- 0 . 0 8 7 9 0 
0.2648 

- 0 . 0 9 0 9 
- 0 . 1 2 4 0 
- 0 . 0 4 9 9 7 

0.5706 
- 0 . 0 9 5 4 9 

1.24 

20 P. S. Bagus and T. L. Gilbert (to be published). We wish to 
thank Dr. Gilbert for supplying us with these functions. 

R10 5.05 5.936 6.22 
K X 8.0 9.0 9.5 

Ae0 2.73 2.23 1.98 
Aee ••• 1.22 0.94 

listed by Ivey.18 The values of X and Rio which we 
used are given in Table I, together with the experi
mental values of the absorption and emission energies 
which will be used later for comparison. The values 
of the absorption energies are taken from Ref. 18. 
There are some rather large variations in the values re
ported by different investigators, but for our purposes 
these are not important. Where values of the emission 
energy are shown, we have taken them from Schulman 
and Compton,19 and where they are not shown we as
sume them to be approximately one-half of the absorp
tion energies. 

For the orbitals on the neighboring ions, we have 
made the following choices. For the lithium and sodium 
ions, we have used the analytical Hartree-Fock func-

TABLE II. Some results for LiF, LiCl, and LiBr using 2s and 3p 
functions. The excited-state quantities are indicated by primes. 
Subscripts a and e stand for absorption and emission, respectively. 
All quantities are in atomic units except for Aea and Aec, which are 
given in electron volts. 

LiF LiCl LiBr 

A S / 
0/ 
5 / 
5 / 
€e' 

0e 
U 
Aee 

- 0 . 1 3 4 2 1 
0.3820 

- 0 . 0 9 9 8 
- 0 . 1 4 4 8 
- 0 . 0 7 3 3 1 

0.6755 
- 0 . 1 2 5 6 5 

1.42 

- 0 . 1 1 7 4 7 
0.3521 

- 0 . 0 8 9 8 
- 0 . 1 2 9 7 
- 0 . 0 7 0 4 3 

0.5500 
- 0 . 1 3 0 9 5 

1.65 

- 0 . 1 1 2 9 3 
0.3651 

- 0 . 0 8 2 8 
- 0 . 1 1 8 3 
- 0 . 0 7 0 3 8 

0.5684 
- 0 . 1 3 5 1 7 

1.76 

tions supplied to us by T. L. Gilbert20 of Argonne. These 
functions are constructed using a minimal basis set. 
The radial part of the Li+ function is simply <pu(r) 
= Ne-2.m5r a n d t h e energy els= -2.77148 a.u. The 
radial part of the Na+ 2s function is given by <p2s 
= -0.26883 Nire-10-™r+1.03279 N2re~d-281r and the 
energy is €2s(Na+)= —2.89334 a.u. The radial 2p func
tion is <p2P~N2Pre~*-mr and the energy —1.52886 a.u. 
Already, in the case of this simple sodium function, 
the calculation is very expensive in terms of computer 
time. A more accurate representation of the Hartree-
Fock approximation would greatly increase the time 
and probably could not be justified in light of all of the 
other approximations which have been made. Recogniz-

TABLE IV. Some results for KF, KC1, and KBr using 2s and 3p 
functions. The excited-state quantities are indicated by primes. 
Subscripts a and e stand for absorption and emission, respectively. 
All quantities are in atomic units except for Ae« and Aeet which are 
given in electron volts. 
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TABLE V. Various results for absorption and emission in KF, 
KC1, and KBr. The excited-state quantities are indicated by 
primes. Subscripts a and e stand for absorption and emission, 
respectively. All quantities are in atomic units except for Ae0 
and Aee, which are given in electron volts. 

TABLE VII. Results for the potassium halides when 5/ is forced 
to be equal to 52' while calculating the lattice distortions in the 
relaxed excited state. Sp and 2s functions are used in the excited 
and ground states, respectively. The notation and units follow 
those in the preceding tables. 

KF KC1 KBr KF KC1 KBr 

ASa 
0a 
Si 

€a 
A€« (2s -

AS/ 
0e' 
5i' 
52' 
6 / 
0e 

Aee 

(a) 3s absorption 

>±p) 

-0.16079 
0.9770 
0.0308 

-0.19001 

-0.15869 
0.8999 
0.0205 

-0.17469 

(b) 4p absorption 
1.0037 

-0.10740 
2.58 

(c) 4p -> 2s ( 
-0.10237 

0.3800 
-0.1036 
-0.1384 
-0.05452 

0.6608 
-0.07385 

0.53 

0.8953 
-0.09763 

2.32 

amission 
-0.09286 

0.3380 
-0.0972 
-0.1309 
-0.05191 

0.5888 
-0.09017 

1.04 

-0.15792 
0.8660 
0.0203 

-0.17305 

0.8718 
-0.09957 

2.20 

-0.08925 
0.3271 

-0.0947 
-0.1275 
-0.05110 

0.5682 
-0.09325 

1.15 

ing this, we decided to use the simplest possible func
tions for the potassium halides. We used the orbital 
formed by the Slater prescription, namely, ip(r) 
= iV>20_2'583r for the radial part of both the 3s and 3p 
functions. For the energies, we chose those used by 
Howland in Ref. 14, namely, €3̂ = —1.965 a.u. and 
€3p= —1.1705 a.u. 

We tried Is, 2s, and 3s functions for the ground state 
of the lithium halides and found that the 2s function 
gave the lowest value of ST

d in all three cases. A 3p 
function was somewhat better than a 2p function in the 
excited state, both before and after relaxation. In the 
sodium and potassium halides, we at first simply used a 
2s function in the ground state and a 3p function in the 
excited state without searching for the optimum value 
of n in Eq. (19), since it seemed likely to us that the 2s 
and 3p functions were adequate to give the essential 
features of the absorption and emission processes. The 
results of these calculations are shown in Tables II-IV. 
Most of the quantities appearing in the tables have al
ready been defined. AS is the right-hand side of Eq. (29) 

TABLE VI. Results for the second minimum in the excited-state 
energy surface of the sodium halides. In NaF, the program does 
not become stuck in this miniumm if it exists. The notations and 
units follow those of the preceding tables. 

NaF NaCl NaBr 

AS/ 
0J 
5i ' 

fc' 
€ . ' 

0c 
€e 

Aee 

-0.13421 
0.3820 

-0.0998 
-0.1448 
-0.07331 

0.6755 
-0.12565 

1.42 

0.11947 
0.6770 
0.0437 
•0.0177 
0.09568 
0.6535 
0.18348 
2.39 

-0.12156 
0.6711 

-0.0394 
+0.0036 
-0.10524 

0.6330 
-0.18693 

2.22 

A S / 
5 / = 62 

Ae* 

-0.10198 
-0.1126 

0.2961 
-0.05106 

0.6632 
-0.07559 
0.67 

-0.09073 
-0.1052 
0.2709 

-0.04959 

0.5914 
-0.09214 

1.16 

-0.08751 
-0.1019 

0.2690 
-0.04922 

0.5682 
-0.09545 

1.26 

minus 8TU, AS is the transition energy. Primes denote 
excited state quantities and the subscripts a and e de
note absorption and emission, respectively. 

Because the potassium halides (especially KC1) are of 
particular interest to experimentalists and as a study 
of the sensitivity of the energy and distortions to the 
form of the trial function, we tried using a 3s ground 
state function and a 4^ excited-state function for the 
absorption process in these crystals. The results are 
shown in Table V. Also shown in Table V are the re
sults using a \p excited state and a 2s ground state in the 
emission process. We did not try a 3s function here. 

Our calculations indicate that the energy surface 
given by &T

d=z &Td($\ M$) is rather bumpy. We en
countered a number of local minima in the various cal
culations, but the program, with one exception, never 
became stuck in any of these. This one exception 
occurred in almost all of the crystals in the emission 
state; as an example, we give the data for the sodium 
halides in Table VI. The values of AS J for NaCl and 
NaBr in this table are actually lower than the cor
responding values in Table III and would thus seem to 
imply that Table VI represents the true state of affairs. 
Table VI indicates that this difficulty did not occur in 
NaF. We shall discuss this problem further in the next 
section. 

In Table VII, we show results for the emission states 
when 81 is kept equal to 52' in conformity with the 
simple configuration coordinate theory as described in 
Sec. III. A 3p function is used in the excited state and 
a 2s in the ground state. 

In Table VIII, we give some data on the oscillator 
strengths, dipole matrix elements, lifetimes, etc., of 
KC1. 

TABLE VIII. Transition matrix elements, oscillator strengths, and 
lifetime data for KC1. Tbaa in Eq. (36) is taken to be 10~8 sec. 

Absorption Emission 

(^0,1 r|<Ki'>2 

/ 
4.953 
0.87 

rexp=60X10-8sec 

2.316 
0.19 

T t h e o r y ^ 2 0 X l 0 - 8 S e C 
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We show, in Fig. 1, the picture which emerges from 
these calculations in a typical case, namely, that for 
KC1. We constructed this figure by taking Howland's 
results on KC1 for the position of the maximum and the 
total width of the valence band. We located the bottom 
of the conduction band relative to the valence band in 
the pure crystal, roughly, from experimental data by 
adding 1 eV to the first exciton peak (^7 .6 eV). 

VI. DISCUSSION 

The absorption energies given in Tables I I - IV differ 
from the experimental values by about 0-10% except in 
the case of LiF, where the error is much larger. In the 
LiF calculation, however, there is a local minimum in 
the excited state (shown in parentheses in Table II) 
which fits in much better with the over-all picture and 
we believe that this is the appropriate minimum to con
sider here. From a comparison of the data in Tables 
I I - IV with those in Table I, it is apparent that there is 
a systematic, nonuniform error in all of the absorption 
energies. We do not yet know the origin of this error, 
but it seems likely to us that it is caused by one or 
more of the following three factors: The first is that the 
trial functions used here are too simple and inflexible 
to describe all of the details of the center. For one thing, 
the radial part of the s function violates the boundary 
condition at the center of the vacancy. Also, group 
theoretical considerations show that appropriate linear 
combinations of g terms, as well as s terms, transform 
according to the Tx+ representation and that g and / 
terms can contribute to functions which transform like 
the Yc representation. We feel that the contribution of 
g terms to both the ground and excited states is very 
small, but we are much less certain about the contribu
tion of / terms to the first excited state. Thus, even 
within the framework of the simple model which we are 
using, our trial functions leave something to be desired. 
The second factor which may be of importance is our 
neglect of the finite size of the Inn ions. This may be 
particularly important in the cases where the interionic 
distance is small and the radii of the alkali and halide 
ions are greatly different, e.g., in LiF. The third factor 
is our neglect of polarization, which is probably quite 
all right in the ground state but may not be permissible 
in the excited state. The calculations of Gourary and 
Adrian in Ref. 2 indicate that polarization is small in 
both the ground and excited states, but it seems to us 
that this problem needs further investigation. 

The ground-state distortions obtained from these 
calculations are rather small and in most cases in toward 
the center of the vacancy. In Ref. 4, Wood and Korringa 
reported a small outward displacement in Li CI. The 
only essential differences between the LiCl ground-state 
calculation reported here and the one reported in Ref. 4 
are that here we have included exchange and Coulomb 
repulsion terms with the electrons on the neighboring 
ions and the computer has carried the iterative pro
cedure used to minimize the total energy to completion. 
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I t is most likely the exchange interaction which makes 
the biggest difference. 

Improvements of our very simple treatment of the 
classical ionic theory part of the calculation will in
fluence the distortions somewhat. We have used the 
simplest Born theory with a Coulomb attractive term 
and a repulsive term of the form bR~x. Of course, the 
use of the more accurate Born-Mayer theory with an 
exponential repulsive term, van der Waals terms, etc., 
would be desirable. However, we feel that our result 
which shows that the distortions are small in the ground 
state is quite valid. 

Parts a and b of Table V are included in order to give 
some idea of the sensitivity of the calculations to changes 
in the form of the wave functions. With the Ss func
tion, the total energy ST

d is higher than it is for the 
2s function and so we conclude that the 2s function 
is slightly better. I t also results in a somewhat lower 
energy for ea but the values of the distortions are not 
greatly affected by this change in the form of the 
function. Taking the distortions given by the 2s func
tion, we tried using a 4p function for the excited state, 
with results which are slightly better than those for a 
3p function. Thus, using energy minimization as the 
criterion, the 2s-4p description is the best of those 
tried here. 

Another problem somewhat related to the above is 
that of other minima in the energy surface. That such 
minima exist might be surmised from the results on 
lithium fluoride. We have already mentioned that 
there is a minimum in the curve €</= to! (fid) at a value 
of 0.9405 for/?,/ for which c«' = -0.02247 a.u. We studied 
this problem in the ground state of the lithium halides 
by starting the energy minimization procedure with 
values of fia about half as large as those shown in Table 
I I . The results were no different from those shown in 
Table II , so we conclude that, in the ground state, rela
tive minima pose no great problem for the computer 
program. 

The most striking result shown by the emission data 
is that the theory does indeed give a large Stokes 
shift, which in many cases results in the relationship 
Aee^0.5Aea being obtained. However, a systematic 
error similar to the one which occurred in the absorption 
energies seems to be operating here, too. We assume that 
the origin or origins of these errors are the same, with 
the possibility of one additional factor in the excited 
state. In general, for a given crystal, the greater the 
distortions the larger the Stokes shift will be. This 
suggests that in all three groups of three crystals the 
tendency is for the distortions to be too great in the 
crystals with small interionic distances and too small for 
the crystals with large interionic distances. Of if other 
factors operate, it may be that the distortions are just 
too great for the crystals with small interionic distances. 
The causes of excessive distortions could be many, but 
it seems to us that the principal one is again that of 
oversimplified trial functions. In the relaxed excited 
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state, where distortions are large and the wave func
tions quite diffuse, Inn and polarization effects may be 
even more important than they are in the absorption 
states. Finally, the additional factor, unique to the re
laxed excited state, is that, because of the large distor
tions, the Taylor series expansion of the classical part 
of the energy expression may be beginning to lose 
validity. 

The distortions in the relaxed excited state obtained 
from the calculations reported here are substantially 
different from those reported by Wood and Korringa for 
LiCl in Ref. 4. There appear to be three reasons for this, 
two of which we have already mentioned above in dis
cussing the ground-state distortions. The third reason is 
that the quadrupole terms introduced by the asym
metrical distortions have been treated much more 
accurately here than they were in Ref. 4. 

Part c of Table V indicates that a 4p function gives 
a slightly better representation of the excited state in 
the emission process. We did not try a 3s ground-state 
function, since it seemed that little was to be gained 
in the way of getting better agreement with experiment. 

The data in Table VI illustrate the difficulties en
countered with the minima in the energy surface. In the 
sodium halides, the minima shown in Table VI for NaCl 
and NaBr are close to, but somewhat lower than, those 
shown in Table I I I and would therefore seem to be the 
appropriate ones. Since they fit in so poorly with the 
data for the other crystals and do not agree at all with 
experiments, we conclude that the ones shown in Table 
I I I are the appropriate ones. There are corresponding 
relative minima in the cases of the lithium and potassium 
halides and it may be that they actually do exist and 
have some physical significance, but we have no way of 
knowing from these calculations. Experimentally, their 
existence would presumably show up as an emission 
line shifted only a slight amount from the absorption 
line. 

From Table VII, we can see the results obtained from 
a model which corresponds to that used in obtaining 
conventional configuration coordinate diagrams. We 
were somewhat surprised to find so little differences be
tween these data and those in Table IV. Apparently, 
fairly large asymmetrical distortions produce about the 
same effect on the energy levels as do symmetrical dis
tortions whose magnitude is the average of the asym
metrical distortions. Just what implications, if any, this 
has for the interaction of the defect with the phonon 
field we do not know at this time. 

To a very limited extent, we studied the effect of the 
form of the core orbitals on the energies and distor
tions. In the preceding section, we described the orbitals 
which we used on the neighboring ions. We note here 
that the single term Li+ Is function is a rather good 
analytical fit to the doubly occupied Hartree-Fock 
spatial orbital, and that a linear combination of two 
such exponentials is a very good fit. We assume then 
that, as far as the energy calculations are concerned, 

our Is lithium function is essentially the Hartree-Fock 
function. For the sodium ions, we have used fairly ade
quate representations of the 2s and 2p Hartree-Fock 
orbitals, but we have neglected the Is core orbitals. In 
the potassium halides, we have made no attempt to 
use even approximate Hartree-Fock functions but in
stead use the very simple Slater functions, albeit with 
the Hartree-Fock energies, for the 3s and 3p electrons. 
We neglect the inner electrons altogether. A survey of 
the results in Tables I I - IV indicates that the over-all 
accuracy of the absorption calculations is about the same 
in all of the crystals. In the emission calculations, how
ever, the Stokes shift is consistently less in the sodium 
halides than in the other crystals, although the magni
tudes of the distortions do not seem unreasonable. In a 
calculation on the absorption process, which we have 
not reported here, we included the Is orbitals on NaCl 
and found that they could affect the transition energy by 
about two-tenths of an electron volt. Unfortunately, 
their inclusion makes the calculation much more com
plex and time consuming, and we felt that other aspects 
of the work need further refinement before a thorough 
quantitative study could be made of the role of the 
structure of the neighboring ions. 

In this connection, it would be interesting to try a 
pseudopotential21 type of calculation on the F center. 
The last three terms in Eq. (17) tend to cancel each 
other somewhat and their resultant contribution, 
though by no means negligible, may be small enough to 
treat by first-order perturbation theory. A pseudopo
tential approach might be adequate for the energy cal
culation, but it is not obvious that it would deal with 
the hyperfine interaction, oscillator strength, distor
tions, etc., in a satisfactory way. A rigorously con
structed pseudopotential operator is nonlocal and 
probably as difficult to construct as is the solution of 
the problem it was originally intended to circumvent. 
I t is, therefore, customary to replace the exact pseudo-
potential with some approximation thereof. Once this 
has been done, however, the question arises as to 
whether or not it might have been easier to make similar 
simplifying assumptions in an approach of the type 
used here. Actually, a fairly simple model formulation 
may be all that is needed in many defect calculations. 
Thus, using the approach we have taken here but 
assuming a very simple pseudo- or effective potential 
for the neighboring ions may give results accurate 
enough for most purposes. 

The picture of the absorption and emission processes 
which emerges from these calculations is indicated 
roughly in Fig. 1. The excited state after lattice relaxa
tion appears to move up into the conduction band, but 
this has no significance, for a number of reasons. For 
one thing, in drawing the diagram we did not attempt to 
locate the bottom of the conduction band with any 
great accuracy. This would have been difficult enough to 

21 See, for example, B. J. Austin, V. Heine, and L. J. Sham, Phys. 
Rev. 127, 276 (1962) and references therein. 
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do for a perfect crystal, but even more so for a crystal 
containing a defect where local distortions of the band 
in the vicinity of the defect may occur. Another reason 
for the roughness of the diagram is the fact that our 
energy levels for all states undoubtedly lie lower than 
we indicate here. Within the framework of our model 
and the variation principle, as we make the F-center 
trial function <£0 more flexible, the energy levels will go 
down. Subsequent calculations have indicated that a 
shift downward of the order of 1 eV may easily occur. 
In spite of the approximate nature of the figure, we do 
feel that it is instructive and illustrates an effect which 
is important, i.e., that the excited state before relaxa
tion lies further below the conduction band than it does 
after relaxation. The interpretation of the Faraday rota
tion experiments of Ltity and Mort22 involves the first 
excited state before relaxation, and Smith and Fowler23 

have given preliminary results on the calculation of the 
spin-orbit interaction in the unrelaxed excited state. 
On the other hand, luminescence and lifetime experi
ments give considerable information on the relaxed 
excited state and it may be possible soon to do spin 
resonance experiments on this state. Therefore, it seems 
that eventually a fairly exact treatment of this effect 
may be obtained. 

In Table VIII, the data on the oscillator strengths and 
lifetimes in KC1 tend to indicate that the long lifetime 
reported in Ref. 6 is at least partially understandable 
through our calculations. The matrix element effect is 
not as large as we had guessed it would be, but this may 
be a fault of our wave functions. The excited-state wave 
function after relaxation is evidently rather diffuse and 
therefore probably more affected by polarization effects 
than is the ground state. Because the wave function is 
already diffuse and much of the charge density lies in 
regions of slowly varying, weak potentials, it may be 
that the wave functions could spread out much more 
without changing the energy greatly. That is, the energy 
may no longer be very sensitive to the spatial extension 
of the wave function. The wave functions are already 
sufficiently diffuse to suggest that a perturbed band 
calculation approach to the relaxed excited state might 
be more appropirate than the method which we have 
used. Unfortunately, very few calculations have been 
carried out on the conduction band of alkali-halide 
crystals. 

We summarize the results reported here as follows: 
The distortions in the ground state are small but in the 
excited state they are of the order of 10% of the nearest-
neighbor distance and have a pronounced asymmetry. 
The treatment we have given can explain the large 
Stokes shift and perhaps the long lifetime, although 
further work is needed on this latter point. Our wave 
functions are still too inflexible to allow us to locate 
the position of the individual levels with any great 

22 F. Ltity and J. Mort, Phys. Rev. Letters 12, 45 (1964). 
23 D. Y. Smith and W. Beall Fowler, Bull. Am. Phys. Soc. 9, 

240 (1964). 

FIG. 1. Energy level diagram of the absorption 
and emission processes in KC1. 

accuracy. We feel that the approach to the problem 
which we have used is basically sound, but it needs 
further refinement. These refinements should be con
cerned with (1) adding greater flexibility to the trial 
functions, (2) including Inn effects, (3) including 
polarization effects, and (4) improving the classical 
ionic theory part of the calculation. At present, we are 
concentrating our attention on the first of these re
finements and we shall report on the results at a later 
date. 

Note added in proof. W. Beall Fowler has informed us 
of calculations of his which indicate that, because of 
electronic polarization effects, which we have neglected, 
there occurs a much greater spreading out of the relaxed 
excited-state wave function than that which we have 
obtained in these calculations. This would tend to con
firm our own qualitative ideas about the effects of 
polarization. However, we prefer to withhold comment 
about their magnitude until our own calculations have 
progressed further. 
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APPENDIX 

We continue here the reduction of the right-hand side 
of Eq. (10). We have assumed that all free ion orbitals 
which appear in Eq. (7) are orthogonal. This will be 
true on any one ion because of the symmetry of the 
orbitals. A few simple calculations show that, for 
IXT^V, (0M,fc | </>?,;) is much smaller than ($o|$j>,y), pro
vided the latter integral does not vanish from sym
metry, and so we put the former integral equal to zero. 
This is a good approximation for the lithium ions in the 
lithium halides and not at all bad even for the potas
sium ions in potassium fluoride. It is a good approxima
tion because the overlap charge density 0M,fc(l)<£„,;(l) is 
very small, so that we are justified in assuming the 
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condition in which 
* M ( 1 ) 0 , J ( 1 ) = O , (Al) «> 

Pv( l ,2 )=E^ .Al )^ / (2 ) (A6) 
which, of course, is stronger than 3=1 

< * M I ^ > = 0 . (A2) a n d 

N—1 w/ 

As we shall see, the condition (Al) enables us to make p„'(l,2) = E E 0j",y(l)0y',y*(2). (A7) 
a number of simplifying approximations. £' 5 ° J = * 

When A operates on <£„j, we separate i t into a part 
hv,j which is the effective Hamiltonian for the j t h orbital W e t a e 

on the *>th ion 0„,y, and the part which remains, hv,j<i>v,j— tj&j (A8) 

hvJ=h—hv,j. (A3) a n c [ u s e the Hartree-Fock energies for ey, although the 
^ , i is given by u s e 0f experimental ionization energies would not affect 

Zv r p„(2,2)—p„(l,2)Pi2 the results greatly. We then have that 
hVtj=-iV2 + / dr2 (A4) 

and hVt/ by and 
N—l Z > 

hyj=- E <tfr,i|A|0o>=<0o|*|&,/> 
j ; - i | r - R / | =€X*o|*r.y>+<*oIWI^J>- (A10) 

+ /* ^ ( 2 > 2 ) " " ^ / ( 1 > 2 ) p » J ^ ^ ^A5) Because of Eq. (Al) the second term in Eq. (A9) can be 
J r12 written as 

N-1 _ f «i.,**(l)pO/^.i(l) 

v' j£v 

+ L L dT&Tl, (All) 
2v—1 « / /• 

E E / 
V 7&V 

in which p0 ' is the operator defined in Eq. (15). 
If we again use Eq. (Al) and the fact that the sums over v' now run over lattice sites which have been assumed to 

be occupied by point ions, the exchange integrals in the last term of Eq. (Al l ) will vanish; the Coulomb integrals 
in the same term will combine with the nuclear attraction integrals of the first term to give a point ion approxima
tion. We then get 

N'x r 0M.**(lW0p.y(l) 
< * M . * | A > . / I ^ > = - E (±V<*M.*l (k-Rr ' l " 1 ) l*r ,y>«i . .Aj+ / fariri. (A12) 

v'=i J m v' 9^v 

Using the same type of arguments we reduce (4>o\hr\4>v>j) to 

• *o*(l ) P O W 1 ) N~1 r 9 < T W P O VPJW 

( * o | W l ^ . i > = - E (±V<0o|(|r-BF , |-1) |*.y>+ / rfrjrfn. (A13) 
v' 9^V 

We can get rid of the last term in both Eqs. (A12) and (A13) by remembering that from (0o[&|0o) we have the 
term 

' <£0*(l)poVo(l) 

/ : 
' 1 2 

When Eqs. (A12), (A13), and this term are substituted in Eq. (10), they give a contribution, which, it is easy to 
see, can be written as 

r *O.I*(1)PO ,*O.I(1) 
1 dridr^. 

f\2 

However, this is identically zero as can be seen by writing p0 ' in terms of the <j)'s 
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We then write Eq. (10) as 

e^NpHT-iaM-mio^-Z R^+T, A terms+E A - £ e x + 2 E £ cMfolfrj) 

- Z 1 ( ± V < * o | ( | r - R , . | - 0 | ^ > ] + i : Z €,/&- E1(±)X^.y|(l>--R,' |-1)l^,y>]}. (A14) 

In this expression, we note that 0„,> is a highly localized, 
very compact, positive-ion wave function, whereas 0O 

is a much more diffuse function. We can make the sums 
over v1 go from 0 to TV— 1 by adding and subtracting a 
term due to v' — 0. Then we can write the last term in 
Eq. (A14) as 

i V - l 

= O M - l)i?f *+E (ionic A terms). (A15) 

The compact nature of the ion orbitals makes the sum of 
the ionic A terms very small and we shall neglect them. 
Also, because of the small spatial extent of 0„,y, we can 
put 

(0o \<i>p,j/ 
<0Dl( | r -R^ | - ' ) l ^ .y )^ / r^ • (A16) 

| R „ — R V ' I 

Here, /„,/,„' is a factor which takes into account the fact 
that the overlap charge 0O(1)0„,;(1) may not be cen
tered exactly at the *>th ion site as is assumed in the 
denominator of Eq. (A 16). The approximation given 
by Eq. (A16) is actually a device for avoiding the cal
culation of many small three-center integrals. It is 
probably a very good approximation for the lithium 
halides but somewhat less valid for the potassium 
halides. With this approximation the second term in the 

first square bracket in Eq. (A 14) becomes 

E~(±V<*oJ(|r-R,,|-V,,y> 

- ^ M & i i ^ i -iE=irl •(A17) 

v' 7$v 

Now we rather arbitrarily replace the sum over v' in 
this equation by the Madelung potential times a factor 
Fvj which is meant to account for the factors fpjy. 
The Madelung potential is rather slowly varying in the 
immediate vicinity of any ion, so this should be a better 
approximation than Eq. (A16). For simplicity we put 

f,.S.o=F,j. (A18) 

Noting that, because of Eqs. (7) and (8), cvj= — (0O10*,/), 
we obtain from Eq. (A14) 

6=iV F
2 {r~(a i l f - l )^ io- 1 -E i ^ - H - E A terms+E A 

- ^ e X - E E c,/iej+(2Fr,~l)(aM-l)Rr12} , (A19) 

which is the expression we have used in our work. 
Our treatment of the three-center integrals via the 

approximation given by Eq. (A 16) and the introduction 
°f fvjy, Fv,j and the relation Eq. (A18) is certainly not 
very rigorous, but, in fact, it is probably a fairly good 
one. We have not checked it in any great detail simply 
because, in any case, the energy ey in the square bracket 
is much larger than the other terms therein. 


